The Development of Emotional Flexible Spine Humanoid Robots

نویسندگان

  • Jimmy Or
  • Miomir Vukobratovic
  • Atsuo Takanishi
چکیده

Over the past 15 years, there has been an increasing interest in humanoid robots. Researchers worldwide are trying to develop robots that look and move more like humans because they believe that anthropometric biped robots have several advantages over wheeled robots. For instance, humanoid robots can communicate with us and express their emotions by facial expressions, speech and body language. They can also work in our living environment without the need of special infrastructure. Moreover, they can serve as companions and take care of the elderly in our aging society. Due to the usefulness of humanoid robots, some research labs and companies, especially in Japan and Korea, have spent an enormous amount of financial and human resources in this research area. With advances in computer and robot technologies (RT), several impressive biped walking humanoid robots have been developed. For instance, the Honda’s ASIMO, Sony’s QRIO and the Kawada’s HRP-3P. Although these robots are able to walk stably, their movements are not as natural looking as a human’s. One of the reasons is that they do not have a flexible spine as we do. Instead, they have a box-like torso. Since it is very difficult to design and control a biped walking spine robot, researchers have been treating their robots as a rigid mass carried by the legs. They neglect the contributions of the spine in daily activities. We believe that in order for the next generation of humanoid robots to better express themselves through body language and to achieve tasks that cannot be accomplished by conventional humanoid robots, they should have a flexible spine as we do. This chapter is organized as follows. In Section 2 we give an overview of related research on flexible spine humanoid robotics and point out some of the problems faced by researchers in this research area. Then, in Section 3, we describe our approach for solving these problems. In Section 4, we present psychological experiments on the effect of a flexible spine humanoid robot on human perceptions. Finally, in Section 5, we conclude this chapter.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot

This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...

متن کامل

A Control System for a Flexible Spine Belly-Dancing Humanoid

Recently, there has been a lot of interest in building anthropomorphic robots. Research on humanoid robotics has focused on the control of manipulators and walking machines. The contributions of the torso towards ordinary movements (such as walking, dancing, attracting mates, and maintaining balance) have been neglected by almost all humanoid robotic researchers. We believe that the next genera...

متن کامل

A Musculoskeletal Flexible-Spine Humanoid Kotaro Aiming at the Future in 15 years time

Recently, humanoid research and development are widely under way. There are, however, still a lot of problems we have to solve. One fundamental problem is contact with a human. Robots coexisting with human beings have contact with human on a daily basis, and they are required to be entirely safe. Another fundamental problem for human coexisting robots is the diversity of humans’ fields; diversi...

متن کامل

PSO-Based Path Planning Algorithm for Humanoid Robots Considering Safety

In this paper we introduce an improvement in the path planning algorithm for the humanoid soccer playing robot which uses Ferguson splines and PSO (Particle Swarm Optimization). The objective of the algorithm is to find a path through other playing robots to the ball, which should be as short as possible and also safe enough. Ferguson splines create preliminary paths using random generated para...

متن کامل

Dynamically-Stable Motion Planning for Humanoid Robots

We present an algorithm for computing stable collision-free motions for humanoid robots given fullbody posture goals. The motion planner is part of a simulation environment under development for providing high-level software control for humanoid robots. Given a robot’s internal model of the environment and a statically-stable desired posture, we use a randomized path planner to search the confi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012